Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет» (ФГБОУ ВО «КнАГУ»)

УТВЕРЖДАЮ

Декан ФЭУ

А.С. Гудим «<u>21</u>» <u>03</u> 20<u>22</u>г.

РАБОЧАЯ ПРОГРАММА

дисциплины

2.1.5 «Электротехнические комплексы и системы» ОПОП ВО

по научной специальности 2.4.2. Электротехнические комплексы и системы

Форма обучения очная

Технология обучения традиционная

Трудоемкость дисциплины 2 з.е.

Трудоемкость кандидатского экзамена 1 s.e.

русский Язык образования

Рабочая программа обсуждена и одобрена на заседании кафедры «Электромеханика»

Заведующий кафедрой «Электромеханика»

Протокол № _7_ от

«<u>21</u>» _____ марта ___ 2022 г.

А.В. Сериков

21» марта 2028.

Автор рабочей программы дисциплины д-р техн. наук, доцент

_ А.В. Сериков

1» maping 2029.

Введение

Учебная дисциплина «Электротехнические комплексы и системы» входит в блок «Дисциплины» образовательного компонента учебного плана и является обязательной дисциплиной подготовки аспирантов по научной специальности 2.4.2. Электротехнические комплексы и системы.

Структура рабочей программы соответствует федеральным государственным требованиями, утвержденным приказом Минобрнауки России от 20.10.2021 № 951.

При изучении данной дисциплины у аспирантов должны сформироваться компетенции, необходимые для научной и научно-педагогической деятельности в области электротехники, а также знания, умения и владения, необходимые в дальнейшей профессиональной деятельности, в том числе и для успешной сдачи кандидатского экзамена по указанной научной специальности.

Дисциплина реализуются частично в форме практической подготовки, непрерывно. Дисциплина может быть реализована непосредственно в ФГБОУ ВО «КнАГУ» или в профильной организации.

Распределение нагрузки в часах при изучении дисциплины «Электротехнические комплексы и системы» представлено ниже.

Вид нагрузки	Объем, акаде-	Объем в фор-
	мические часы	ме практиче-
		ской подго-
		товки, акаде-
		мические часы
Лекции	8	-
Практики	10	2
Самостоятельная работа	54	4
Общее количество часов	72	6
2.3.5 Кандидатский экзамен по электротехническим ком-	36	-
плексам и системам		

1 Пояснительная записка

1.1 Предмет, цели, задачи, принципы построения и реализации дисциплины

Предметом изучения дисциплины «Электротехнические комплексы и системы» являются электротехнические комплексы и системы генерирования электрической энергии, электропривода, электроснабжения, электрооборудования, электротехнологии промышленных и сельскохозяйственных предприятий и организаций, транспортных средств, аэрокосмической техники, морских и речных судов, служебных и жилых зданий, специальной техники.

Цель дисциплины «Электротехнические комплексы и системы» — формирование у аспирантов знаний, умений и владений по общим закономерностям преобразования, накопления, передачи и использования электрической энергии и электротехнической информации, а также изучение принципов и средств управления объектами, определяющими функциональные свойства действующих или создаваемых электротехнических комплексов и систем промышленного, транспортного, бытового и специального назначения.

Задачи курса:

- 1. Изучение общей теории развития электротехнических комплексов и систем, системных свойств и связей, физическое, математическое, имитационное и компьютерное моделирование компонентов электротехнических комплексов и систем.
- 2. Формирование способности обосновать совокупность технических, технологических, экономических, экологических и социальных критериев оценки принимаемых решений в области проектирования, создания и эксплуатации электротехнических комплексов и систем.
- 3. Приобретение знаний по структурному и параметрическому синтезу электротехнических комплексов и систем, их оптимизации, а также по разработке алгоритмов эффективного управления.
- 4. Формирование навыков исследования работоспособности и качества функционирования электротехнических комплексов и систем в различных режимах, при разнообразных внешних воздействиях.
- 5. Формирование компетенций о совокупности средств, способов и методов деятельности, направленных на теоретическую разработку и экспериментальное исследование проблем, связанных с созданием конкурентоспособных электротехнических комплексов и систем.
- 6. Формирование компетенций, направленных на создание новых (на уровне мировых стандартов) и совершенствование действующих электротехнических комплексов и систем.

Построение и реализация курса основывается на следующих принципах:

- <u>принцип соответствия установленным требованиям</u> ФГТ и требованиям внутривузовских нормативных документов;
- <u>системность и логическая последовательность</u> представления учебного материала и его практических приложений;
- <u>профессиональная направленность</u>, связь теории и практики обучения с будущей профессиональной деятельностью, в целом с жизнью, предусматривает учет будущей специальности и профессиональных интересов аспирантов;
- принцип доступности, обеспечивающий соответствие объемов и сложности учебного материала реальным возможностям аспирантов;
- <u>принцип модульного построения</u> дисциплины заключается в том, что каждый из компонентов (модулей) дисциплины имеет определенную логическую завершенность по отношению к установленным целям и результатам воспитания и обучения;
- принцип формирования мотивации, положительного отношения к процессу обучения, предлагая актуальные темы для обсуждения и используя такие методы обучения, которые дадут возможность аспирантам проявить себя наилучшим образом, раскрыть свои знания;
- <u>принцип сознательности</u> означает сознательное партнерство и взаимодействие с преподавателем, что непосредственно связано с развитием самостоятельности аспиранта, его творческой активности и личной ответственности за результативность обучения;
- <u>принции прочности усвоения материала</u> достигается за счет его многократного воспроизведения в разных контекстах на протяжении всего курса.

1.2 Роль и место дисциплины в структуре реализуемой программы аспирантуры. Планируемые результаты освоения

Учебная дисциплина «Электротехнические комплексы и системы» изучается во втором полугодии второго года обучения. По результатам освоения дисциплины в период промежуточной аттестации предусмотрена сдача кандидатского экзамена.

Планируемые результаты освоения дисциплины представлены в таблице 1.

Таблица 1 - Планируемые результаты освоения по дисциплине

-	
Код ре- зультата освоения	Планируемый результат освоения
ПК2	Сформированная профессиональная компетенция – готовность органи-
	зовывать и проводить теоретические и экспериментальные исследования в
	области электротехники
3 (ПК2)	Знание основ теоретических и экспериментальных исследований
У (ПК2)	Умение организовывать и проводить поиск необходимой информации для
	научных исследований
В (ПК2)	Владение навыками представления результатов научных исследований
ПК3	Сформированная профессиональная компетенция – способность выяв-
	лять системные свойства и связи, осуществлять моделирование компонентов
	электротехнических комплексов и систем
3 (ПК3)	Знание структурных связей и методов моделирования процессов в электро-
	технических комплексах и системах
У (ПК3)	Умение выявлять системные свойства и связи в электротехнических ком-
	плексах и системах, описывать процессы, протекающие в элементах элек-
	тротехнических комплексов и систем
В (ПК3)	Владение навыками моделирования процессов в элементах электротехниче-
	ских комплексов и систем
КЭ3	Сданный кандидатский экзамен в соответствии с темой диссертации на со-
	искание ученой степени кандидата наук

1.3 Характеристика трудоемкости дисциплины и ее отдельных компонентов

Характеристика трудоемкости дисциплины представлена в таблице 2.

Таблица 2 – Характеристика трудоемкости дисциплины

Tacimqu' 2 Trapak Topino Tima T		Трудоемкость				
	Полуго-	Всего		В том числе, академиче- ские часы		
Наименование показателя	дия	Зачетные единицы	Ака- деми- ческие часы	Аудитор- ные заня- тия	Самосто- ятельная работа	
1 Трудоемкость дисциплины	4	2	72	18	54	
в целом						
2 Трудоемкость по видам						
аудиторных занятий						
- лекции	4	-	8	8	-	
- практики	4	-	10	10	-	
3 Промежуточная аттестация						
- кандидатский экзамен	4	1	36	-	-	

1.4 Входные требования для освоения дисциплины

Знания, умения и владения, необходимые для освоения дисциплины формируются при изучении общепрофессиональных и специальных дисциплин в рамках освоения программ специалитета и/или магистратуры и проверяются в процессе сдачи вступительного экзамена в аспирантуру по специальной дисциплине, вопросы к которому приведены в приложении А.

2 Структура и содержание дисциплины

Структура и содержание дисциплины представлены в таблице 3.

Таблица 3 – Структура и содержание дисциплины

	уктура и содержание дисцинины			
Наименования разделов	Содержание разделов	Трудо- емкость (общая / в форме практи- ческой подго- товки), Акаде- миче- ские	Резуль- таты освое- ния	Виды професси- ональной деятель- ности, трудовые функции и знания препода- вателя
1 Структура и области применения электротехнических комплексов и систем	 Системы генерирования электрической энергии. Области применения и структуры электроприводов. Комбинированные электромеханические системы. Управление технической системой. Электромеханические преобразователи энергии. Силовые электронные преобразователи энергии. 	36/2	3 (ПК2) У (ПК2) В (ПК2) КЭ3	ПД1 ФН1
2 Методы исследования электротехнических комплексов и систем	 Понятия анализа и синтеза электротехнических комплексов и систем. Моделирование систем. Оценка эффективности. Поиск оптимальных решений. 	36/4	3 (ПК3) У (ПК3) В (ПК3) КЭ3	ПД1 ФН1 ФН2 ЗП3
Трудоемкость ди	сциплины	72/6		
Промежуточная а	ттестация – кандидатский экзамен	36		

2.1 Программа аудиторных занятий

Программа аудиторных занятий представлена в таблице 4.

Таблица 4 – Программа аудиторных занятий

	Трудоемкость (об-			Виды професси-
	щая/в фор	ме практи-		ональной дея-
Тематика аудиторных заня-	ческой по	дготовки),	Результаты	тельности, тру-
тий	академич	еские часы	освоения	довые функции
	Лекции	Практи-		и знания препо-
	лекции	ки		давателя
Основные направления и			3 (ПК2)	ПД1
тенденции развития совре-	4/—	2/-	У (ПК2)	ФН1
менных электротехнических	4/—	2/-	В (ПК2)	
комплексов и систем			КЭ3	
Вонноски москоловомия оном			3 (ПК3)	ПД1
Вопросы исследования элек-	4/—	8/2	У (ПК3)	ФН1
тротехнических комплексов			В (ПК3)	ФН2
и систем			КЭ3	3П3
Итого во втором полугодии второго года обучения	8/-	10/2	_	-

Практические задания

Задание 1. Сформировать структуру электротехнического комплекса или системы в соответствии с областью диссертационного исследования. Дать краткую характеристику основных компонентов такого комплекса или системы.

Задание 2. Составить математическую и (или) имитационную модель для исследования электротехнического комплекса или системы по теме собственного диссертационного исследования.

2.2 Программа самостоятельной работы

Предусмотрены следующие виды самостоятельной работы аспирантов:

- самостоятельное изучение разделов дисциплины (перечень тем для самостоятельного изучения представлен в **приложении Б**);
- выполнение реферата (методические указания по выполнению реферата и перечень тем рефератов представлены в **приложении В**).

Программа самостоятельной работы представлена в таблице 5.

Таблица 5 – Программа самостоятельной работы

Вид самостоятельной рабо- ты/оценочное средство	Трудоемкость (общая/в форме практической подготовки), академические часы	Знания, умения, навыки, компе- тенции	Виды профессио- нальной деятельно- сти, трудовые функ- ции и знания препо- давателя
Самостоятельное изучение разделов дисциплины/тест	20/–	3 (ПК2) У (ПК2) В (ПК2) КЭ3	ПД1 ФН1 ФН2 ЗП3

Вид самостоятельной рабо- ты/оценочное средство	Трудоемкость (общая/в форме практической подготовки), академические часы	Знания, умения, навыки, компе- тенции	Виды профессио- нальной деятельно- сти, трудовые функ- ции и знания препо- давателя
Выполнение реферата/реферат	34/4	3 (ПК3) У (ПК3) В (ПК3) КЭ3	ПД1 ФН1 ФН2 ЗП3
Итого во втором полугодии второго года обучения	54/4	_	-

2.3 Индивидуальное задание

Индивидуальное задание выполняется в рамках выполнения самостоятельной работы — выполнении реферата. Тема реферата должна быть выбрана в соответствии с темой диссертации и отраслью защиты конкретного аспиранта и отражена в индивидуальном учебном плане (подробнее — в методических рекомендациях по выполнению реферата (приложение В).

3 Технологии и методическое обеспечение контроля результатов учебной деятельности аспирантов

3.1 Технологии и методическое обеспечение текущего контроля успеваемости аспирантов

Текущий контроль успеваемости аспирантов ведется по результатам выполнения практических заданий и собеседования на консультациях с преподавателем.

3.2 Технологии и методическое обеспечение контроля промежуточной успеваемости

Контроль промежуточной успеваемости аспирантов осуществляется в форме кандидатского экзамена.

На оценку кандидатского экзамена влияет оценка за выполненные в процессе изучения дисциплины оценочные средства:

- практические задания;
- тест (проверка самостоятельного изучения разделов дисциплины **приложение** Γ);
 - реферат.

Система формирования оценки кандидатского экзамена представлена в таблице 6. Кандидатский экзамен проходит в форме устного ответа на вопросы:

- два вопроса основной программы;
- один вопрос дополнительной программы.

Список вопросов к кандидатскому экзамену по основной программе представлен в **приложении** Д. Вопросы дополнительной программы формируются и утверждаются перед кандидатским экзаменом на кафедре прикрепления аспиранта. Вопросы согласуются с темой диссертации аспиранта и отраслью защиты.

Таблица 6 – Система формирования оценки кандидатского экзамена

	Результаты	прования	оценки кандидатского экзамена
	освоения,		
	виды про-		
Оце-	фессио-	Оцен-	
ночное	нальной де-	ка ре-	Процедура оценивания результата освоения с
сред-	ятельности,	зуль-	помощью оценочного средства*
ство	трудовые	тата	
	функции и		
	знания пре- подавателя		
	подавателя	1	Практические задания не выполнены
		2	Практические задания не выполнены
			Структура электротехнического комплекса или си-
	3 (ПК2)		стемы сформирована, но нет характеристики ком-
	У (ПК2)	3	понентов. Отсутствует математическое описание
	В (ПК2)		или имитационная модель.
Протект	3 (ПК3)		Структура электротехнического комплекса или си-
Практи-	У (ПК3)		стемы сформирована. Приведена характеристика
ческие	В (ПК3)	4	компонентов комплекса или системы. Разработана
задания	КЭ3 ПД1 ФН1 ФН2 ЗП3		математическая модель и (или) имитационная мо-
			дель, но отсутствуют результаты моделирования.
			Структура электротехнического комплекса или си-
		5	стемы сформирована. Приведена характеристика
			компонентов комплекса или системы. Разработана
			математическая модель и (или) имитационная мо-
			дель. Имеются результаты моделирования.
			Не собран материал для написания реферата, не
		1	проведена обработка научной, статистической ин-
			формации
	3 (ПК3)	•	Степень выполнения сбора и обработки научной,
	У (ПК3)	2	статистической информации по теме реферата
	В (ПК3)		10 %
D 1	КЭ3	2	Степень выполнения сбора и обработки научной,
Реферат	ПД1	3	статистической информации по теме реферата
	ФН1		30 %
	ФН2	1	Степень выполнения сбора и обработки научной,
	3П3	4	статистической информации по теме реферата 60 %
			Обработки научной,
		5	статистической информации по теме реферата не
		3	менее 80 %
	3 (ПК2)	1	Менее 50 % правильных ответов на вопросы теста
	У (ПК2)	1	
	В (ПК2)	2	51-60 % правильных ответов на вопросы теста
Т.	кэз ′	3	61-70 % правильных ответов на вопросы теста
Тест	ПД1	4	71-90 % правильных ответов на вопросы теста
	ФН1		91-100 % правильных ответов на вопросы теста
	ФН2	5	
	3П3		
Вопро-	3 (ПК2)	1	Нет ответов на поставленные вопросы, кандидат-
	5 (111(2)	1	ский экзамен не сдан

Оце- ночное сред- ство	Результаты освоения, виды профессиональной деятельности, трудовые функции и знания преподавателя	Оцен- ка ре- зуль- тата	Процедура оценивания результата освоения с помощью оценочного средства*
сы к канди-	У (ПК2) В (ПК2)	2	Нет ответов на поставленные вопросы, кандидатский экзамен не сдан
датско- му эк- замену	3 (ПК3) У (ПК3) В (ПК3)	3	Нет ответов на вопросы, но есть отдельные фрагментарные знания по теме вопросов, кандидатский экзамен сдан
	КЭ3 ПД1	Ответы на вопросы не полные, но раскрывающие основную их суть, кандидатский экзамен сдан	
	ФН1 ФН2 3П3	5	Даны исчерпывающие ответы на вопросы, кандидатский экзамен сдан

^{* 5 –} результаты освоения достигнуты в полном объёме

Оценка кандидатского экзамена = (0,33*оценка за первый вопрос основной программы+0,33*оценка за второй вопрос основной программы+0,33*оценка за вопрос дополнительной программы)*1 (если среднеарифметическая оценочных средств более 3), *0 (если среднеарифметическая оценочных средств менее 3). Дробное значение округляется до целого по правилам математики.

4 Ресурсное обеспечение дисциплины

4.1 Список основной учебной, учебно-методической, нормативной и другой литературы и документации

- 1. Липай, Б.Р. Электромеханические системы. М.: Изд-во МЭИ, 2011. 350 с.
- 2. Электрические машины / под ред. И.П. Копылова. M.: Юрайт, 2012. 675 c.
- 3. Онищенко, Г.Б. Теория электропривода [Электронный ресурс] : Учебник / Г.Б. Онищенко. М.: ИНФРА-М, 2015. 294 с. http://znanium.com/bookread2.php?book=452841
- 4. Москаленко В.В. Электрический привод [Электронный ресурс] : Учебник / В.В. Москаленко. М.: ИНФРА-М, 2015. 364 с. http://znanium.com/bookread2.php?book=443646
- 5. Поляков А.Е. Электрические машины, электропривод и системы интеллектуального управления электротехническими комплексами [Электронный ресурс]: учебное пособие / А.Е. Поляков, А.В. Чесноков, Е.М. Филимонова. М.: ФОРУМ: ИНФРА-М, 2015. 224 с. http://znanium.com/bookread2.php?book=506589
- 6. Встовский А.Л. Электрические машины [Электронный ресурс] : учеб. пособие. Красноярск : Сиб. федер. ун-т, 2013. – 464 с. http://znanium.com/bookread2.php?book=492153
- 7. Абакумов, М.В. Лекции по численным методам математической физики [Электронный ресурс] : Учебное пособие / М.В. Абакумов, А.В. Гулин; МГУ им. М.В. Ломоносова М.: НИЦ ИНФРА-М, 2013. 158 с. http://znanium.com/bookread2.php?book= 364601.

^{4 –} результаты освоения достигнуты в достаточном объеме

^{3 –} результаты освоения достигнуты частично

¹ и 2 – результаты освоения не достигнуты

- 8. Черных, И.В. Моделирование электротехнических устройств в Matlab, Simpowersystems и Simulink [Электронный ресурс] / И.В. Черных М.: ДМК Пресс, 2014. 288 с. Режим доступа: http://znanium.com/catalog/product/407099.
- 9. Шаталов, А.Ф. Моделирование в электроэнергетике [Электронный ресурс] : учебное пособие / А.Ф. Шаталов, И.Н. Воротников, М.А. Мастепаненко и др. Ставрополь: АГРУС, 2014. 140 с. http://znanium.com/bookread2.php? book=514263.

4.2 Список дополнительной учебной, учебно-методической, научной и другой литературы и документации

- 1. Ильинский Н.Ф., Козаченко В.Ф. Общий курс электропривода. –М.: Энергоатомиздат, 1992.
- 2. Соколовский Г.Г. Электроприводы переменного тока с частотным регулированием. М.: Изд. Центр «Академия», 2006. 272с.
- 3. Башарин А.В., Постников Ю.В. Примеры расчета автоматизированного привода на ЭВМ. –Л.: Энергоатомиздат, 1990.
- 4. Ильинский Н.Ф. Электропривод: энерго- и ресурсосбережение: учеб. пособие для студ. высш. учеб. заведений. М.: Издательский центр «Академия», 2008. 208 с.
- 5. Белов М.П. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов: Учебник / М.П.Белов, В.А.Новиков, Л.Н.Рассудов. М.: Изд. Центр «Академия», 2004. 576с.
- 6. Электрическая часть станций и подстанций / А.А. Васильев, И.П. Крючков, Е.Ф. Наяшков, М.Н. Околович. –М.: Энергоатомиздат, 1990.
- 7. Терехов В.М. Элементы автоматизированного электропривода. –М.: Энергоатомиздат, 1987.
- 8. Основы современной энергетики: учебник для втузов: в 2 т. / под ред. Е. В. Аметистова 5-е изд., стер. М.: Издательский дом МЭИ, 2010.
 - 9. Гольдберг О.Д. Электромеханика М.: Академия, 2010. 504 с.
- 10. Электрические и электронные аппараты. В 2 т. : учебник для студ. высш. учеб. заведений / под ред. А.Г. Годжелло, Ю.К. Розанова. М. : Издательский центр «Академия», 2010. 2 т.
 - 11. Ключев В.И. Теория электропривода. М.: Энергоатомиздат, 1985.
- 12. Федоров А.А. Основы электроснабжения промышленных предприятий. М.: Энергия, 1984.
- 13. Шенфельд Р., Хабигер Э. Автоматизированные электроприводы. –Л.: Энергоатомиздат, 1985.
- 14. Копылов, И.П. Математическое моделирование электрических машин / И.П. Копылов. М.: Высшая школа, 1994. 318 с.
- 15. Размыслов, В.А. Расчет переходных процессов в электрических машинах численными методами: Учебн. пособие / В.А. Размыслов, А.А. Скрипилев. Комсомольск-на-Амуре: Комсомольский-на-Амуре гос. техн. ун-т, 1997. 99 с.
- 16. Сипайлов, Г.А. Электрические машины (специальный курс) / Г.А. Сипайлов, Е.В. Кононенко, Г.А. Хорьков. М.: Высшая школа, 1987.
- 17. Крючков, И.П. Переходные процессы в электроэнергетических системах / Крючков И.П., Старшинов В.А., Гусев Ю.В., Пираторов М.В. М: Изд. дом МЭИ, 2009. 414 с.
- 18. Справочник по электрическим машинам: в 2 т. / Под общ.ред. И.П. Копылова и Б.К. Клокова. М.: Энергоатомиздат, 1988, 1989. 1 т. 456 с.; 2 т. 688 с.
- 19. Журналы «Электричество», «Электротехника», «Изв. вузов. Электромеханика», «Реферативный журнал. Энергетика и электротехника».

4.3 Перечень программных продуктов, используемых при изучении дисциплины

Расчеты при выполнении индивидуального задания могут проводиться с использованием пакетов прикладных программ MathCAD. Для оформления отчета и материалов для публикации возможно использование текстовых редакторов: Word из пакета Microsoft Office или др. Графическая часть работы может выполняться с применением средств компьютерной графики.

4.4 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»: электронно-библиотечные системы, перечень профессиональных баз данных, перечень информационно-справочных систем

- 1 Электронно-библиотечная система ZNANIUM.COM http://www.znanium.com/
- 2 Электронные информационные ресурсы издательства Springer Springer Journals https://link.springer.com
- 3 Политематическая реферативно-библиографическая и наукометрическая база данных Web of Science (http://apps.webofknowledge.com).
 - 4 База данных международных индексов научного цитирования Scopus.
 - 5 Информационно-справочная система «Консультант плюс».
 - 6 Информационно-справочная система «Техэксперт».

4.5 Другие информационные ресурсы

- 1 http://en.edu.ru Естественнонаучный образовательный портал.
- 2 http://www.school.edu.ru Российский общеобразовательный портал.
- 3 http://uisrussia.msu.ru/is4/main.jsp Университетская информационная система России. База электронных ресурсов для исследований и образования в области экономики, социологии, политологии, международных отношений и других гуманитарных наук.
- 4 http://www.redline-isp.ru/ Российская образовательная телекоммуникационная сеть.
 - 5 http://edu.ru/ Федеральный портал «Российское образование».
 - 6 http://www.openet.ru/ Российский портал открытого образования.
- 7 http://www.gnpbu.ru/ научная педагогическая библиотека имени К.Д. Ушинского.
 - 8 http://www.hayka.ru/ наука и образование, электронный журнал.
 - 9 http://pedagogy.ru/ справочный сайт по педагогике.
 - 10 http://www.pedlib.ru/- педагогическая библиотека.
 - 11 http://www.koob.ru/pedagogics/ библиотека «Куб».

4.6 Материальное обеспечение дисциплины

Материально-техническое обеспечение дисциплины представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение дисциплины

N.C.	17	T								
№	Наименование	11	0	M						
п/	компонента	Наименование	Оснащенность	Местоположение						
П	программы	помещений	помещений	помещений						
<u>C</u> -	аспирантуры									
	Специальные помещения и оборудование для реализации образовательного ком-									
	понента программы аспирантуры, в том числе для проведения учебных занятий									
	по дисциплинам (модулям) в формах, устанавливаемых организацией; прохождения аспирантами прохождения и оборудородие и да проро									
	ния аспирантами практики. Специальные помещения и оборудование для прове-									
деі	дение контроля качества освоения образовательного компонента посредством текущего контроля успеваемости, промежуточной аттестации									
1	2.1.5 Электро-	Учебная аудито-	Помещение осна-	Учебный корпус № 3,						
1	технические	рия для прове-	щено:	Хабаровский край, го-						
	комплексы и	дения лекцион-	специализирован-	род Комсомольск-на-						
	системы	ных занятий,	ной (учебной) ме-	Амуре, проспект Лени-						
		индивидуальных	белью, оборудова-	на, д. 27, литер Ж, по-						
		и групповых	нием для презента-	мещение, 2 этаж (ауди-						
		консультаций,	ции учебного мате-	тория 216)						
		самостоятельной	риала и для выпол-	* ′						
		работы на 12 ра-	нения самостоя-							
		бочих мест.	тельной работы:							
			универсальные ла-							
			бораторные стенды							
			«Электромеханиче-							
			ские преобразова-							
			тели» и «Силовые							
			вентильные преоб-							
			разователи» произ-							
			водства ИПЦ «Учебная техника»							
			г. Челябинск; муль-							
			тимедийный проек-							
			тор, экран, ноутбук.							
		Учебная аудито-	Помещение осна-	Учебный корпус № 3,						
		рия для прове-	щено:	Хабаровский край, го-						
		дения индивиду-	учебной мебелью,	род Комсомольск-на-						
		альных и груп-	доска маркерная;	Амуре, проспект Лени-						
		повых консуль-	компьютерами (си-	на, д. 27, литер Ж, по-						
		таций, самостоя-	стемный блок Intel	мещение 17, 2 этаж						
		тельной работы	Core i5-2400,	(аудитория 202)						
		на 9 рабочих	3100 MHz, монитор							
		мест.	Acer V193) с не-							
			ограниченным до-							
			ступом к сети Ин-							
			тернет, включая							
		Учебная аудито-	доступ к ЭБС. Помещение осна-	Vиобицій корпус № 2						
		рия для прове-	щено:	Учебный корпус № 3, Хабаровский край, го-						
		дения индивиду-	специализирован-	род Комсомольск-на-						
		альных и груп-	ной (учебной) ме-	Амуре, проспект Лени-						
		повых консуль-	белью, оборудова-	на, д. 27, литер Ж, по-						
		таций, самостоя-	нием для выполне-	мещение 31, 1 этаж						
		тельной работы	ния самостоятель-	(аудитория 104)						
		16.1biton pacera	IIIIA CUMOCIOAICIB-	(аудитория тот)						

№ п/ п	Наименование компонента программы аспирантуры	Наименование помещений	Оснащенность помещений	Местоположение помещений
		на 16 рабочих	ной работы: лабо-	
		мест.	раторный стенд	
			удаленного доступа	
			электроприводов	
			постоянного и пе-	
			ременного тока	
			Siemens.	

ПРИЛОЖЕНИЕ А

(обязательное)

Вопросы к вступительному испытанию

- 1. Основные понятия и законы электромагнитного поля и теории электрических и магнитных цепей.
 - 2. Переходные процессы в линейных цепях и методы их расчета.
- 3. Теория электромагнитного поля, электростатическое поле, стационарное электрическое и магнитное поля.
- 4. Уравнения электромеханического преобразователя с использованием теории обобщенной электрической машины.
- 5. Основные элементы конструкции и принцип действия машины постоянного тока. Способы пуска и регулирования частоты вращения двигателей постоянного тока.
- 6. Основные элементы конструкции и принцип действия асинхронного двигателя. Способы пуска и регулирования частоты вращения асинхронных двигателей.
- 7. Основные элементы конструкции и принцип действия трансформаторов. Условия включения трансформаторов на параллельную работу. Схемы и группы соединения обмоток трехфазных трансформаторов.
- 8. Синхронные машины. Основные элементы конструкции, назначение. Способы включения синхронных генераторов на параллельную работу с сетью. Синхронные двигатели. Их достоинства и недостатки. Способы пуска в ход.
- 9. Основные характеристики электрических двигателей, генераторов и преобразователей: эксплуатационные требования к ним, тенденции их развития.
- 10. Электрический аппарат как средство управления режимами работы, защиты и регулирования параметров системы (классификация, требования, основные характеристики, выбор, применение и эксплуатация).
 - 11. Выбор, применение и эксплуатация электрических аппаратов.
 - 12. Физические явления в электрических аппаратах.
- 13. Электропривод как система (структурная схема электропривода, механическая и электрическая часть силового канала электропривода).Обобщенные функциональные схемы электроприводов.
- 14. Физические процессы в электроприводах с машинами постоянного тока, асинхронными и синхронными машинами.
- 15. Упрощенная функциональная схема и принцип действия 2-х контурной системы подчинённого регулирования.
- 16. Установившиеся режимы работы электропривода: понятие установившегося режима для позиционного, скоростного, моментного электроприводов, принципы получения математического описания установившихся режимов электроприводов.
- 17. Способы регулирования скорости и семейства механических характеристик асинхронного двигателя: изменением числа пар полюсов, изменением частоты, закон частотного управления Костенко, пропорциональный закон частотного управления как его частный случай.
- 18. Функции и структуры систем автоматического управления электроприводами. Типовые схемы и системы, осуществляющие автоматический пуск, реверс и останов электродвигателей. Синтез систем с контактными и бесконтактными элементами.
 - 19. Принципы и системы управления электроприводов.
- 20. Общие вопросы теории замкнутых систем автоматического управления электроприводом (САУ). Методы анализа и синтеза замкнутых линейных и нелинейных, непрерывных и дискретных САУ. Применение микропроцессорной техники в САУ.

- 21. Системы управления электроприводами постоянного и переменного тока. Типовые структуры систем управления асинхронными и синхронными двигателями. Особенности построения систем управления с тиристорными преобразователями. Системы управления машинами двойного питания.
- 22. Адаптивные системы автоматического управления и принципы их реализации применительно к электроприводу.
- 23. Регулирование координат электропривода. Характеристика систем электроприводов: управляемый преобразователь-двигатель постоянного тока; преобразователь частоты-асинхронный двигатель; преобразователь частоты синхронный двигатель.
 - 24. Классификация методов расчета электрических нагрузок.
- 25. Электроснабжение промышленных предприятий. Структура систем электроснабжения. Требования к системам электроснабжения.
 - 26. Электроприемники и потребители электроэнергии.
- 27. Баланс мощностей в узлах электрической системы. Компенсация реактивной мощности.
- 28. Короткие замыкания в системах электроснабжения. Причины и последствия. Способы ограничения токов короткого замыкания.
 - 29. Релейная защита и автоматика энергосистем.
 - 30. Алгоритм расчета трехфазного короткого замыкания в сложной схеме.
- 31. Основные показатели качества электрической энергии. Нормирование показателей качества электрической энергии.
- 32. Общие направления к повышению эффективности использования энергии в различных системах и установках.

Список литературы для подготовки к вступительному экзамену

- 1. Липай Б.Р. Электромеханические системы. М.: Изд-во МЭИ, 2011. 350 с.
- 2. Электрические машины / под ред. И.П. Копылова. М.: Юрайт, 2012. 675 с.
- 3. Онищенко, Г.Б. Теория электропривода [Электронный ресурс] : Учебник / Г.Б. Онищенко. М.: ИНФРА-М, 2015. 294 с. http://znanium.com/bookread2.php?book=452841
- 4. Москаленко В.В. Электрический привод [Электронный ресурс] : Учебник / В.В. Москаленко. М.: ИНФРА-М, 2015. 364 с. http://znanium.com/bookread2.php?book=443646
- 5. Поляков А.Е. Электрические машины, электропривод и системы интеллектуального управления электротехническими комплексами [Электронный ресурс]: учебное пособие / А.Е. Поляков, А.В. Чесноков, Е.М. Филимонова. М.: ФОРУМ: ИНФРА-М, 2015. 224 с. http://znanium.com/bookread2.php?book=506589
- 6. Встовский А.Л. Электрические машины [Электронный ресурс] : учеб. пособие. Красноярск : Сиб. федер. ун-т, 2013. 464 с. http://znanium.com/bookread2.php?book=492153

приложение Б

(обязательное)

Перечень тем для самостоятельного изучения

- 1. Управление технической системой.
- 2. Области применения и структуры электроэнергетических установок, выполненных на базе электромеханических систем.
 - 3. Области применения и структуры электроприводов.
- 4. Основные показатели и характеристики электромеханических преобразователей, используемых в системах электроснабжения.
- 5. Основные показатели и характеристики электромеханических преобразователей, применяемых в системах электропривода.
- 6. Классификация и области применения силовых электронных устройств в электротехнических комплексах и системах.
- 7. Накопители энергии в составе электротехнических комплексов и систем различного назначения.
- 8. Математические и компьютерные модели электромеханических преобразователей.
 - 9. Методы исследования электромеханических систем.
 - 10. Моделирование электротехнических систем.
- 11. Критерии эффективности электротехнических систем, обобщенные критерии эффективности сложных систем и устройств.
 - 12. Анализ и синтез электротехнических систем.

приложение в

(обязательное)

Методические указания по выполнению реферата и темы реферата

Тема реферата аспиранту выдается *с учетом тематики его диссертации и отрасли защиты*. Выполненный реферат должен быть оформлен в виде отчета.

Структура реферата:

- 1) тема из списка приложения выбирается аспирантом самостоятельно
- 2) индивидуальное задание

Индивидуальное задание аспиранту выдается в первом полугодии второго года обучения с учетом тематики его диссертационных исследований. В этом полугодии разрабатывается структурная схема электротехнического комплекса, формируются требования как к комплексу в целом, так и к его элементам. Разрабатывается модель для расчета основных параметров. Во втором полугодии второго года расчетная модель реализуется на ЭВМ и проводятся исследования. Выполненное индивидуальное задание должно быть представлено в виде отчета, который должен быть оформлен в соответствии с РД 013 «Текстовые студенческие работы. Правила оформления» и защищено. Результаты индивидуального задания могут быть аспирантом опубликовать и использованы в диссертационной работе.

Темы реферата

- 1. Электротехнические комплексы и системы стационарных электростанций.
- 2. Автономные энергетические системы общего назначения.
- 3. Дизель-генераторные установки.
- 4. Генераторные установки для автономных подвижных объектов.
- 5. Тяговые электротехнические системы.
- 6. Бесконтактные генераторные установки.
- 7. Генераторные электромеханические системы, выполненные на базе электромашинных преобразователей.
- 8. Электротехнические комплексы и системы, использующие возобновляемую энергию.
 - 9. Электропривод с автоматической стабилизацией каких-либо показателей.
 - 10. Следящий электропривод.
 - 11. Приводы для автоматизации технологических процессов.
 - 12. Электропривод малой мощности с двигателем последовательного возбуждения.
 - 13. Программное управление электроприводами.
 - 14. Электропривод с адаптивным управлением.
 - 15. Электропривод транспортного назначения.
 - 16. Вентильные электромеханические преобразователи энергии.
 - 17. Силовые преобразовательные комплексы и системы.
 - 18. Электротехнический комплекс для автономной системы теплообеспечения.
 - 19. Электротехнический комплекс для улучшения качества электрической энергии.

ПРИЛОЖЕНИЕ Г (обязательное)

Тест

- 1. В электротехнический комплекс не входят ...
 - 1. Электромеханические преобразователи энергии.
 - 2. Силовые полупроводниковые преобразователи.
 - 3. Системы управления, контроля и защиты.
 - 4. Параметры окружающей среды.
- 2. Электротехническая система это ...
- 1. Совокупность взаимосвязанных электротехнических элементов, обеспечивающих выполнение определенных функций с требуемым качеством.
- 2. Набор электротехнических элементов, расположенных в непосредственной близости друг от друга.
- 3. Совокупность невзаимосвязанных электротехнических элементов, выполняющих различные задачи.
 - 4. Объекты электротехники предприятия, цеха, участка.
- 3. Какая электромеханическая система предназначена только для преобразования электрической энергии в механическую?
 - 1. Источники электропитания.
 - 2. Системы электропривода.
 - 3. Двигатель-генераторные системы.
 - 4. Электроэнергетические установки.
- 4. Что не является электромеханическим преобразователем?
 - 1. Электродвигатель.
 - 2. Электрогенератор.
 - 3. Синхронный компенсатор.
 - 4. Статический компенсатор реактивной мощности.
- 5. В состав вентильного генератора не должен входить ...
 - 1. Коллекторный генератор постоянного тока.
 - 2. Синхронный генератор.
 - 3. Полупроводниковый выпрямитель.
 - 4. Управляемый выпрямитель.
- 6. В состав вентильного электродвигателя обязательно входит ...
 - 1. Механический коллектор.
 - 2. Вентильный выпрямитель.
 - 3. Датчик положения ротора.
 - 4. Технологическая машина.
- 7. К бесконтактным электромеханическим преобразователям энергии относится ...
 - 1. Машина двойного питания.
 - 2. Машина постоянного тока.
 - 3. Асинхронная машина с фазным ротором.
 - 4. Асинхронная машина с короткозамкнутым ротором.
- 8. К полупроводниковому преобразователю не относится ...
 - 1. Выпрямитель.
 - 2. Вентильный генератор.

- 3. Инвертор.
- 4. Реверсивный вентильный преобразователь.
- 9. В какой электротехнической системе отсутствует обратная связь?
 - 1. Следящий электропривод.
 - 2. Электропривод с адаптивным управлением.
- 3. Привод, обеспечивающий пуск, остановку и реверс электромеханического преобразователя.
 - 4. Электропривод стабильной скорости.
- 10. Какой основной недостаток ограничивает использование асинхронного генератора?
 - 1. Отсутствие источника реактивной мощности.
 - 2. Отсутствие скользящих контактов.
 - 3. Невозможность реализации генераторного режима в асинхронных машинах.
 - 4. Сложность включения на параллельную работу.
- 11. В качестве силовых преобразовательных устройств в электротехнических комплексах и системах могут быть применены ...
 - 1. Только электромашинные преобразователи.
 - 2. Только электронные преобразователи.
 - 3. Как электромашинные преобразователи, так и электронные.
 - 4. Трансформаторы.
- 12. Основной функцией силового электронного преобразователя является ...
 - 1. Преобразование одного вида электрической энергии в другой.
 - 2. Преобразование механической энергии в электрическую.
 - 3. Преобразование электрической энергии в механическую.
 - 3. Преобразование механической энергии одного вида в другой.
- 13. К силовому электронному преобразователю не относится ...
 - 1. Выпрямитель.
 - 2. Инвертор.
 - 3. Преобразователь частоты.
 - 4. Трансформатор.
- 14. Назовите основное назначение выпрямителя.
 - 1. Преобразовывать постоянное напряжение в переменное.
- 2. Преобразовывать переменное напряжение одной частоты в переменное напряжение другой частоты.
 - 3. Преобразовывать переменное напряжение в постоянное.
- 4. Преобразовывать переменное напряжение одной величины в переменное напряжение другой величины.
- 15. Назовите основное назначение инвертора.
 - 1. Преобразовывать постоянное напряжение в переменное.
- 2. Преобразовывать переменное напряжение одной частоты в переменное напряжение другой частоты.
 - 3. Преобразовывать переменное напряжение в постоянное.
- 4. Преобразовывать переменное напряжение одной величины в переменное напряжение другой величины.
- 16. Для питания каких потребителей применяются преобразователи частоты?
 - 1. Потребителей переменного тока.
 - 2. Потребителей постоянного тока от источника переменного тока.
 - 3. Потребителей переменного тока от источника постоянного тока.

- 17. Какое устройство не является накопителем энергии?
 - 1. Аккумулятор.
 - 2. Конденсатор.
 - 3. Индуктивная катушка.
 - 4. Силовой трансформатор.
- 18. По каким расчетным параметрам производится выбор тиристоров?
- 1. Номинальное значение выпрямленного тока, значение фазного напряжения на вторичной стороне преобразовательного трансформатора.
- 2. Действующее значение тока вторичной обмотки, максимальное обратное напряжение на вентилях.
- 3. Максимальное обратное напряжение на вентилях, максимальное среднее значение тока, проходящего через тиристор.
- 19. При каких условиях открывается тиристор?
 - 1. Потенциал катода больше потенциала анода.
 - 2. На управляющих электрод подан импульс управления.
- 3. На управляющий электрод подан импульс управления и потенциал анода больше потенциала катода.
- 4. На управляющий электрод подан импульс управления или потенциал анода больше потенциала катода.
- 20. Как изменяется угол коммутации при увеличении тока нагрузки преобразователя?
 - 1. Не изменяется.
 - 2. Увеличивается.
 - 3. Уменьшается.
- 21. Шестиполюсный асинхронный двигатель подключен к сети переменного тока с частотой 50 Гц. Определить частоту вращения магнитного поля статора (об/мин) n₁.
 - 1. 3000 об/мин.
 - 2. 1000 об/мин.
 - 3. 750 об/мин.
 - 4. 500 об/мин.
- 22. Какую максимальную частоту вращения может иметь магнитное поле статора асинхронного двигателя при частоте питающей сети 100 Гц.
 - 1. 1000 об/мин.
 - 2. 3000 об/мин.
 - 3. 4000 об/мин.
 - 4. 6000об/мин.
- 23. При регулировании частоты вращения трёхфазного асинхронного двигателя были получены следующие значения: 1450, 980, 740 об/мин. Каким способом осуществлялось регулирование?
 - 1. изменение частоты сети.
 - 2. изменением числа пар полюсов.
 - 3. изменением тока возбуждения.
 - 4. изменением напряжения питающей сети.
- 24. Как изменится пусковой ток асинхронного двигателя, если пуск производиться переключением статорных обмоток со «звезды» на «треугольник»?
 - 1. Уменьшится в $\sqrt{3}$ раз.
 - 2. увеличится в $\sqrt{3}$ раз.

- 3. уменьшится в 3 раза.
- 4. увеличится в 3 раза.
- 25. В каких пределах изменяется скольжение асинхронной машины в режиме двигателя?
 - $1.-\infty$ до 0.
 - 2. от 0 до 1.
 - 3.0 до +∞.
 - 4. 1 до $+ \infty$.
- 26. В каких пределах изменяется скольжение асинхронной машины в режиме генератора?
 - 1. ∞ до 0.
 - 2. от 0 до 1.
 - 3. 0 до +∞.
 - 4. 1 до $+ \infty$.
- 27. Что называется группой соединения обмоток трансформатора?
 - 1. Количество катушек в каждой фазе.
- 2. Угол сдвига фаз между одноимёнными линейными напряжениями обмотки высокого напряжения и обмотки низкого напряжения.
 - 3. Угол сдвига фаз между линейными и фазными напряжениями.
 - 4. Количество обмоток на вторичной стороне трансформатора.
- 28. Укажите условия параллельной работы трёхфазных трансформаторов.
- 1. Одинаковые коэффициенты трансформации, одинаковые потери холостого хода, одинаковые группы соединений.
- 2. Одинаковые номинальные напряжения вторичных обмоток, одинаковые схемы обмоток, одинаковые группы соединений.
- 3. Одинаковые коэффициенты трансформации, одинаковые напряжения короткого замыкания, одинаковые группы соединений.
- 4. Одинаковые группы соединений, одинаковые номинальные мощности, одинаковые напряжения короткого замыкания.
- 29. При одинаковой мощности автотрансформатор будет:
 - 1. Легчеобычного трансформатора.
 - 2. Тяжелее обычного трансформатора.
 - 3. Таким же по массе, как обычный трансформатор.
- 30. Какой из трансформаторов (с масляным или воздушным охлаждением) обладает большей мощностью, если масса активных частей и подводимое напряжение одинаковы?
 - 1. С масляным охлаждением.
 - 2. С воздушным охлаждением.
 - 3. Мощность трансформаторов одинакова.
- 31. Показать верное соотношение ЭДС, напряжений и токов в трансформаторе.
 - $1. \ \frac{U_1}{U_2} \approx \frac{E_1}{E_2} \approx \frac{I_1}{I_2} \, .$
 - $2. \ \frac{E_1}{E_2} = \frac{U_1}{U_2} \approx \frac{I_2}{I_1} \, .$
 - 3. $\frac{U_1}{E_1} = \frac{U_2}{E_2} \approx \frac{I_1}{I_2}$.
 - 4. $\frac{I_1}{U_1} = \frac{I_2}{U_2} = \frac{E_2}{E_1}$.

- 32. Для чего предназначены главные полюса в машине постоянного тока?
 - 1. Для создания вращающегося магнитного поля.
 - 2. Для создания переменного магнитного поля в воздушном зазоре.
- 3. Для создания постоянного во времени и неподвижного в пространстве магнитного потока.
 - 4. Для создания знакопеременного магнитного поля.
- 33. В какой обмотке МПТ протекает переменный ток?
 - 1. В обмотке главных полюсов.
 - 2. В обмотке добавочных полюсов.
 - 3. В обмотке якоря.
 - 4. В компенсационной обмотке.
- 34. При увеличении сопротивления в цепи якоря двигателя постоянного тока скорость вращения ...
 - 1. Увеличится.
 - 2. Уменьшится.
 - 3. Не изменится.
- 35. При увеличении сопротивления в цепи параллельного возбуждения двигателя постоянного тока скорость вращения ...
 - 1. Увеличится.
 - 2. Уменьшится.
 - 3. Не изменится.
- 36 Чем отличается математическое моделирование от физического?
 - 1. Применением модели той же физической природы, что и оригинал.
 - 2. Модель и оригинал описываются одинаковыми по форме уравнениями.
 - 3. Возможностью полного учета процессов, происходящих в оригинале.
- 37. Какой вид моделирования основан на исследовании модели той же физической природы, что и оригинал?
 - 1. Аналоговое.
 - 2. Математическое.
 - 3. Физическое.
- 38. В чем преимущество аналогового способа моделированияот цифрового?
 - 1. Высокая точность получаемого результата.
 - 2. Мгновенное получение результата.
 - 3. Дискретность получаемых результатов.
- 39. Какой вид моделирования не относится к математическому?
 - 1. Цифровое.
 - 2. Аналоговое.
 - 3. Физическое.
- 40. Назовите причину для ввода системы допущений при математическом описании физических процессов в электротехнических комплексах и системах.
- 1. Упрощение математического описания процессов и возможность получения решения задачи.
- 2. Возможность использования одной модели для описания процессов в различных объектах.
 - 3. Возможность получения быстрого результата решения задачи.

- 41. Какое допущение используется для математического описания идеализированной электрической машины.
 - 1. Отсутствие нагрузки на валу.
 - 2. Отсутствие высших гармоник магнитного поля.
 - 3. Отсутствие активных сопротивлений в многовитковых катушках (обмотках).
- 42. Какие уравнения составляются при описании переходных процессов в электромеханических преобразователях энергии?
 - 1. Алгебраические уравнения состояния электрических и магнитных цепей.
 - 2. Дифференциальные уравнения в частных производных.
- 3. Уравнения равновесия напряжений обмоток и уравнение равновесия моментов на валу машины.
- 43. Какая система координат для исследования переходных процессов в трехфазном электромеханическом преобразователе энергии не является ортогональной?
 - 1. Фазовая система координат.
 - 2. Система координат α, β.
 - 3. Система координат u, v.
- 44. Назовите неподвижную систему координатных осей, т.е. жестко связанную со статором электромеханического преобразователя энергии.
 - 1. Система координат α, β.
 - 2. Система координат d, q.
 - 3. Система координат u, v.
- 45. Какую систему координатных осей обычно используют для исследования процессов в асинхронных двигателях?
 - 1. Система координат α, β.
 - 2. Система координат d, q.
 - 3. Система координат u, v.
- 46. Какую систему координатных осей обычно используют для исследования процессов в синхронных машинах?
 - 1. Система координат α, β.
 - 2. Система координат d, q.
 - 3. Система координат u, v.
- 47. Если одна часть электрической машины (статор или ротор) симметрична, а другая нет, то координатные оси следует жестко связывать ...
 - 1. С симметричной частью.
 - 2. С несимметричной частью.
 - 3. С неподвижной частью.
- 48. Сколько дифференциальных уравнений необходимо для математического описания трехфазной асинхронной машины в естественной фазовой системе координатных осей?
 - 1.5
 - 2.6
 - 3. 7 или 8.

- 49. Что не является принципиальным преимуществом системы относительных единиц, используемой при исследовании переходных процессов в электромеханических преобразователях энергии?
 - 1. Упрощается вид системы уравнений электрической машины.
- 2. Легче сравнивать поведения машин разных мощностей и типов в различных режимах работы.
- 3. Некоторые параметры электрических машин заданы в относительных единицах, что не требует их пересчета из абсолютных величин.
- 50. Какие процессы в электромеханическом преобразователе энергии позволяет анализировать математические модели на основе системы дифференциальных уравнений?
 - 1. Переходные и установившиеся процессы.
 - 2. Только переходные процессы.
 - 3. Только установившиеся режимы.
- 51. Какой вид переходного процесса учитывает изменение частоты вращения вала в электромеханическом преобразователе энергии?
 - 1. Волновой.
 - 2. Электромагнитный.
 - 3. Электромеханический.
- 52. В моделировании каких процессов нет необходимости при исследовании трансформатора?
 - 1. Тепловых.
 - 2. Электромагнитных.
 - 3. Электромеханических.
- 53. Какие математические модели применяются для решения задач исследования электромеханических преобразователей энергии на микроуровне?
 - 1. На основе дифференциальных уравнений в частных производных.
- 2. На основе системы алгебраических и обыкновенных дифференциальных уравнений.
 - 3. Модели информационных процессов.
- 54. Какие методы моделирования относятся к макроуровню при исследовании электромеханических преобразователей энергии в составе электротехнической системы?
 - 1. Методы теории поля.
 - 2. Методы теории цепей.
 - 3. Методы на основе информационных процессов.
- 55. Метод планирования эксперимента позволяет ...
 - 1. Значительно уменьшить объем вычислений на ЭВМ.
 - 2. Повысить точность моделей.
 - 3. Создать экспериментальную базу.

приложение д

(обязательное)

Вопросы к кандидатскому экзамену (основная программа)

- 1. Понятие электротехнической системы и ее описание.
- 2. Управление электротехнической системой.
- 3. Структуры и области применения электроэнергетических комплексов и систем.
- 4. Области применения и структуры современных электроприводов.
- 5. Основные показатели и характеристики электромеханических преобразователей, используемых в системах электроснабжения.
- 6. Основные показатели и характеристики электромеханических преобразователей, применяемых в системах электропривода.
- 7. Математические и компьютерные модели электромеханических преобразователей.
- 8. Классификация и области рационального применения силовых электронных устройств в электротехнических комплексах и системах.
- 9. Массоэнергетические показатели, статические и динамические характеристики электронных преобразовательных устройств.
- 10. Математическое описание основных элементов силовых преобразовательных устройств.
 - 11. Анализ и синтез электротехнических комплексов и систем.
 - 12. Моделирование электротехнических комплексов и систем.
 - 13. Системы автоматического управления.
- 14. Обобщенные критерии эффективности электротехнических комплексов и систем.
 - 15. Анализ электротехнических комплексов и систем.
 - 16. Выбор численных методов решения задач анализа.
 - 17. Этапы проектирования и принципы создания технических систем.
- 18. Задачи синтеза электротехнических комплексов и систем. Общая структура алгоритма поиска оптимальных проектных решений.
 - 19. Проблемы электромеханического преобразования энергии.
- 20. Физические процессы в электроприводах с машинами постоянного тока, асинхронными и синхронными машинами.
 - 21. Информационный и силовой канал электропривода, особенности их описания.
 - 22. Принципы управления в электроприводе.
- 23. Синтез структур и параметров информационного канала, координатные и фазные преобразования переменных.
- 24. Статические и динамические характеристики двигателей постоянного и переменного токов как объектов управления.
- 25. Влияние упруго-диссипативных свойств механических связей на динамику электропривода.
- 26. Энергосберегающие технологии в объектно-ориентированных электроприводах.
- 27. Регулирование координат электропривода; назначение, классификация систем управления.
- 28. Непрерывные системы управления в электроприводах; непрерывные системы управления скоростью электропривода постоянного тока; модальное управление; наблюдающие устройства; адаптивно-модальное управление; адаптивный регулятор тока.
- 29. Особенности оптимизации следящих электроприводов с детерминированными и стохастическими воздействиями.

- 30. Электроприводы переменного тока с преобразователями частоты на базе инверторов напряжения и тока, с преобразователями частоты с непосредственной связью.
- 31. Типовые системы регулирования и ограничения координат в комплектных электроприводах и системах автоматизации.
- 32. Системы координатных осей, применяемые при исследовании электромеханических преобразователей энергии. Преобразование координат. Системы относительных единиц.
 - 33. Обобщенный электромеханический преобразователь энергии.
- 34. Математическая модель асинхронного двигателя в неподвижной ортогональной системе координат.
- 35. Дифференциальные уравнения трехфазного асинхронного двигателя в естественной фазной системе координат.
- 36. Математическая модель двигателя постоянного тока смешанного и параллельного возбуждения.
- 37. Математическая модель двигателя постоянного тока последовательного возбуждения.
- 38. Математическая модель синхронной машины в ортогональной вращающейся системе координат d, q.
- 39. Дифференциальные уравнения трехфазной синхронной машины в фазной системе координат.
- 40. Численные методы расчета динамических режимов электромеханических преобразователей энергии. Выбор шага интегрирования. Задание начальных условий.

Список литературы для подготовки к кандидатскому экзамену указан в разделе 4 рабочей программы

Лист регистрации изменений

№ п/п	Номер протокола заседания кафедры, дата утверждения изменения	Количество страниц изменения	Подпись автора РПД
1	Изменения в Учебном плане (протокол № 8 от 17.04.2023)	4	